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Abstract

This Supporting Information presents a step-by-step description of our methodology for gener-
ating random interaction matrices and Allometric Trophic Networks (Section 1), shows further
results obtained from our simulations (Section 2), and gives extra details on the theoretical
background of matrix binning (Section 3). We also describe a simple algorithm for obtaining
the ε-pseudospectral contour lines of any given matrix (Section 4). Finally, we derive a new
metric for assessing the degree of nonnormality of a matrix, which is useful in assessing how
sensitive its spectrum is expected to be to perturbing its entries (Section 5).
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1 More details on the simulation methods

1.1 Random interaction matrices

Here is a step-by-step breakdown of how we created our random interaction matrices.

1. We first pick a species richness S and a connectance C (i.e., the fraction of nonzero interactions
in the matrix). In our simulations S was either 50, 100, 250, or 500, and C was chosen from
0.1, 0.25, 0.5, or 1.

2. Consider the following procedure for generating a probability distribution. First pick a
distribution shape from two options: either lognormal or Gamma. Then determine the given
distribution’s mean by sampling it uniformly from [0.1, 10]. Finally, the standard deviation is
also sampled uniformly, from [1, 10].

3. Use this procedure to generate four separate probability distributions. Call the first one
“PredPrey” for predator-prey, the second one “Mut” for mutualism, the third “Comp” for
competition, and the last one “Diag” for diagonal.

4. How do we decide whether to pick a lognormal or a Gamma distribution? We actually repeated
every simulation with all 16 possible combinations of the distributions, with “PredPrey”,
“Mut”, “Comp”, and “Diag” all taking on both possible values, so nothing was left out.

5. Generate two random numbers, both of them sampled from [0, 1]. Call them Ct and Cm (for
“trophic” and “mutualistic”).

6. Now generate an S×S matrix A of all zeros.

7. Make a fraction Ct C of the offdiagonal entries predator-prey, a fraction CmC mutualistic,
and a fraction C(1−Ct −Cm) competitive (leave the rest of the 1−C entries as zeros). The
predator-prey entries are drawn from “PredPrey”, the mutualistic ones from “Mut”, and the
competitive ones from “Comp”. For predator-prey interactions, make sure that the (i, j)th and
( j, i)th entries of A have the opposite sign; for mutualism, both should be positive, and for
competition, both negative.

8. Finally, the diagonal of the matrix is generated: fill out the diagonal entries by sampling from
the distribution “Diag”. Multiply the diagonal by −1 to make its entries negative.

9. Note: one could introduce a “diagonal connectance” Cd , i.e., the fraction of nonzero diagonal
entries. However, in our simulations we always set this to 1, so no diagonal entries were left
equal to zero.

Here is a function, written in R (R Development Core Team 2008), that we used to implement
this procedure:
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# This function generates a random interaction matrix with a prescribed
# proportion of trophic, mutualistic, and competitive interactions.
#
# Input
# -----
# S: number of species.
# C: connectance (fraction of nonzero interactions); between 0 and 1.
# ppred: probability that a nonzero link is predator-prey (between 0 and 1).
# pcomp: probability that a nonzero non-predator-prey link is competitive
# (between 0 and 1); the rest are mutualistic.
# conv: conversion efficiency of predators; realistically between 0 and 1.
# pdist, mdist, cdist: distribution from which trophic, mutualistic, and
# competitive entries are drawn. Values: 1 = lognormal; 2 = Gamma.
# mp, sp, mm, sm, mc, sc: sample means and standard deviations for each
# distribution. The (mp, sp) are mean and std dev for predator-prey,
# (mm, sm) are for mutualism, and (mc, sc) for competition.
# Cd: fraction of diagonal entries that are nonzero.
# ddist: distribution from which nonzero diagonal entries are drawn.
# Values: 1 = lognormal; 2 = Gamma. Note: the diagonal entries are
# never positive (i.e., the values drawn from the chosen distribution
# get multiplied by -1).
# md, sd: sample mean and standard deviation of nonzero diagonal entries.
#
# Output
# ------
# An S-by-S matrix
#
GenerateMatrix <- function(S, C, ppred, pcomp, conv, pdist, mdist, cdist,

mp, sp, mm, sm, mc, sc, Cd, ddist, md, sd) {
# Generate adjacency matrix. Only upper triangle is generated; the
# diagonal and lower triangular part are discarded. Entry is 0 for
# absence and 1 for presence of interaction.
A <- matrix(sample(0:1, S*S, replace=TRUE, prob=c(1-C, C)), nrow=S, ncol=S)
A[lower.tri(A)] <- 0
diag(A) <- 0
# Now set trophic (= 1) vs nontrophic (= 2) interactions:
A <- A * matrix(sample(1:2, S*S, replace=TRUE, prob=c(ppred, 1-ppred)),

nrow=S, ncol=S)

# Create predator-prey adjacency matrix AP
AP <- A
AP[AP!=1] <- 0 # discard nontrophic (= 2) interactions
AP <- AP * matrix(sign(rnorm(S*S)), nrow=S, ncol=S) # either -1 or 1
AP <- AP - t(AP)
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# Create mutualistic and competitive adjacency matrices AM and AC
AM <- A
AM[AM!=2] <- 0
AM[AM==2] <- 1
AM <- AM * matrix(sample(c(-1, 1), S*S, replace=TRUE,

prob=c(pcomp, 1-pcomp)), nrow=S, ncol=S)
AM <- AM + t(AM)
AC <- AM
AM[AM==(-1)] <- 0 # mutualism
AC[AC==1] <- 0 # competition

# Predator-prey values
AP[AP==1] <- conv * AP[AP==1] # conversion efficiencies
if (pdist==1) {

p1 <- log(mp) - log(1 + sp^2/mp^2)/2
p2 <- sqrt(log(1 + sp^2/mp^2))
AP <- AP * matrix(rlnorm(S*S, p1, p2), nrow=S, ncol=S)

}
if (pdist==2) {

p1 <- mp^2 / sp^2
p2 <- sp^2 / mp
AP <- AP * matrix(rgamma(S*S, shape=p1, scale=p2), nrow=S, ncol=S)

}

# Mutualism values
if (mdist==1) {

p1 <- log(mm) - log(1 + sm^2/mm^2)/2
p2 <- sqrt(log(1 + sm^2/mm^2))
AM <- AM * matrix(rlnorm(S*S, p1, p2), nrow=S, ncol=S)

}
if (mdist==2) {

p1 <- mm^2 / sm^2
p2 <- sm^2 / mm
AM <- AM * matrix(rgamma(S*S, shape=p1, scale=p2), nrow=S, ncol=S)

}

# Competition values
if (cdist==1) {

p1 <- log(mc) - log(1 + sc^2/mc^2)/2
p2 <- sqrt(log(1 + sc^2/mc^2))
AC <- AC * matrix(rlnorm(S*S, p1, p2), nrow=S, ncol=S)

}
if (cdist==2) {

p1 <- mc^2 / sc^2
p2 <- sc^2 / mc
AC <- AC * matrix(rgamma(S*S, shape=p1, scale=p2), nrow=S, ncol=S)
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}

# Finally, create the diagonal of the matrix
diagvec <- sample(0:1, S, replace=TRUE, prob=c(1-Cd, Cd))
if (ddist==1) {

p1 <- log(md) - log(1 + sd^2/md^2)/2
p2 <- sqrt(log(1 + sd^2/md^2))
diagvec <- diagvec * rlnorm(S, p1, p2)

}
if (ddist==2) {

p1 <- md^2 / sd^2
p2 <- sd^2 / md
diagvec <- diagvec * rgamma(S, shape=p1, scale=p2)

}

# The sum of all components is the full interaction matrix
return(AP + AM + AC - diag(diagvec))

}

1.2 The Allometric Trophic Network model

To generate community matrices using the Allometric Trophic Network model, we followed the
equations and parameterization described by Berlow et al. (2009). First, a food web’s adjacency
matrix wi j is created using the niche model (Williams and Martinez 2000; see below), where wi j is
equal to 1 if species i eats species j and to 0 otherwise. The dynamical equations of the model read

dBi

dt
= ri Gi(N1,N2)Bi− xi Bi +

S

∑
j=1

wi j xi yBi Fi j−
S

∑
j=1

w ji x j yB j Fji/e ji, (1)

where Bi is the biomass of species i, ri is a nutrient uptake-dependent maximum growth rate,
Gi(N1,N2) is the growth achieved on the two nutrients N1 and N2, xi is a metabolic rate, y is
the maximum consumption rate of consumers relative to their metabolic rate, ei j is species i’s
assimilation efficiency when eating species j, and Fi j is a generalized functional response given by

Fi j =
ωi jBh

j

Bh
0 + cBiBh

0 +∑
S
k=1 wikωikBh

k

. (2)

In this functional response, ωi j is the proportion of i’s maximum consumption rate targeted at
consuming j, B0 is a half-saturation density, h is an exponent determining the Holling type of the
functional response, and c is a predator interference parameter.
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We assume there are two limiting nutrients N1 and N2 which the primary producers can consume.
Their dynamics is given by

dNi

dt
= D(si−Ni)−

S

∑
j=1

ci jriGi(N1,N2)Bi, (3)

where Ni is the concentration of nutrient i, D is a turnover rate, ci j is the content of nutrient i in the
biomass of species j, si is nutrient i’s supply rate, and Gi(N1,N2) is the same function that appeared
in Eq. (1). It is defined by

Gi(N1,N2) = min
(

N1

K1i +N1
,

N2

K2i +N2

)
, (4)

where “min” picks the smaller of the two arguments, and Ki j is species j’s half saturation density
for nutrient i.

The parameters were assigned as follows.

1. S = 50 for the initial number of species.

2. Out of these 50, the number of basal species (primary producers) was sampled uniformly as
an integer from [2, 10]. In our ordering of species, they are the last ones, so if there are two
producers, they will be species 49 and 50.

3. The food web adjacency matrix wi j (equal to 1 if species i eats species j and to 0 otherwise)
is generated by the niche model (Williams and Martinez 2000), in the following way.

• Primary producers only consume nutrients, therefore wi j = 0 for all i that are primary
producers.

• Each consumer species i consumes a range of other species j, j+1, . . . , j+ k, where the
starting index j is uniformly sampled between i+1 and S, and the length k is an integer
sampled from [−(S− i+1)/3, (S− i+1)/3].

• Note: if j+k turns out to be larger than S, it is set equal to S, and if it turns out less than
i+1, it is set to i+1.

4. ωi j = 1/∑
S
j=1 wi j if the sum in the denominator is nonzero; otherwise, ωi j = 0.

5. ri = 1 for species i that are primary producers and 0 otherwise.

6. Determine the trophic level T of each species. Trophic level can be calculated by defining the
matrix Ai j =wi j/∑

S
k=1 wik and the vector ui = 1 (for all i); we then have Ti =∑

S
j=1(I−A)−1

i j u j,
where I is the S× S identity matrix and (I−A)−1

i j is the (i, j)th entry of the inverse of the
matrix I−A.
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7. Define a vector Z of predator-prey body mass ratios; its S entries are sampled from a lognormal
distribution with mean 10 and variance 100.

8. Define the vector of body masses. For predators, the body masses are given by the formula
Mi = ZTi−1

i . For species that are not predators, the body masses are equal to 1.

9. Using this, the metabolic rates xi are calculated as xi = (ax/ar)M−0.25
i , where Mi is species

i’s body mass, and (ax/ar) is equal to 0.138 for primary producers (i.e., species with trophic
level exactly equal to one), and to 0.314 otherwise.

10. Assimilation efficiencies: ei j = 0.45 if the trophic level of species i is exactly 2; otherwise,
ei j = 0.85.

11. The Ki j are uniformly and independently sampled from [0.1, 0.2].

12. c1i = 1 and c2i = 0.5 for all i, y = 8, B0 = 0.5, D = 0.25, h = 2, and si = 1 for both nutrients.

13. Initial conditions: all the Bi and Ni at t = 0 are uniformly sampled from [0.05, 0.2].

With this parameterization, the model equations Eq. (1) can be integrated with any reputable
algorithm for solving systems of ordinary differential equations. We used the NDSolve routine
implemented in Mathematica (Wolfram Research Inc. 2014).

For each of our 10,000 random parameterizations, the equations were solved until they reached
a fixed point. At that point, extinct species were removed, and the Jacobian of the nonextinct part of
the system was evaluated, yielding the community matrix.

2 Further results on our simulated matrices

The first thing to note is the overall insensitivity of the binned community matrices to the misclassi-
fication rate (i.e., the probability per entry of the community matrix that it gets classified into an
incorrect bin). In the main text we always show results with 10% misclassification. Below, we
show the same results with 0% and 20% misclassification rates. For the leading eigenvalues (related
to stability), we have Figs. S1 and S2 for randomly generated matrices, and Figs. S6 and S7 for
Allometric Trophic Networks (Berlow et al. 2009). For the leading eigenvalues of the Hermitian
parts (related to reactivity), we have Figs. S3-S5 (randomly generated matrices) and Figs. S8-S10
(Allometric Trophic Networks); here the results with 10% misclassification rate are also included, as
these were referred to but not shown in the main text. As can be seen, the sensitivity to an increased
misclassification rate is small, though in general it does lead to lower overall prediction accuracy.

We also looked at the effects of connectance on prediction accuracy, both for stability and
reactivity (Figs. S11-S18); the effects, however, do not appear systematic. For instance, for binning
constant b = 4 and number of bins k = 7, increasing connectance improves accuracy when the
number of species is S = 50, but leads to worse accuracy for S = 500. This trend is apparent both in
the case of stability (Figs. S11, S14) and of reactivity (Figs. S15, S18).
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For matrices whose leading eigenvalues are close to the imaginary axis relative to the total
spread of the eigenvalues, stability may be incorrectly predicted even if the leading eigenvalue of
the binned matrix is not very different from that of the original one. To see how often this would
happen, we first take all those matrices for which |rA|/σA < 0.05, i.e., the magnitude of the leading
eigenvalue is less than one twentieth of the total spread of the real parts of all the eigenvalues. The
result depends heavily on the binning resolution b, and especially on the number of bins k (Fig. S19).
For k = 3 (3 bins), stability is more likely to be misclassified than correctly predicted. However, for
b≥ 4 and k ≥ 5, stability is correctly predicted in the majority of cases (for instance, exactly 90%
of the time when b = 4, k = 7). If we are more inclusive and consider all those matrices for which
|rA|/σA < 0.1, this number goes up to 97% (Fig. S20).

The same can be done with reactivity (Figs. S21, S22), where we look at the eigenvalues of
the Hermitian parts H(A), H(B) of the original and binned matrices A and B. For k = 7 bins
and binning resolution b = 4, reactivity is correctly predicted 92% of the time for matrices with
|rH(A)|/σH(A) < 0.05, and 99.4% of the time for matrices with |rH(A)|/σH(A) < 0.1.

Finally, we show that our results do not depend strongly on the particular form of the probability
distribution from which the entries of the random matrices are drawn. We get the same qualitative
results if we draw the entries from a lognormal distribution as if we draw them from a Gamma
distribution, both for stability (Figs. S23, S24) and for reactivity (Figs. S25, S26).

3 Random matrices

Here we describe in general how random matrices are binned when their entries are drawn inde-
pendently from the same underlying probability distribution pA(x). Imagine we are given a binning
scheme with k bins whose values are (x1, x2, . . . , xk). The binned distribution pB(x) is then given by

pB(x) =
k

∑
i=1

wiδ (x− xi), (5)

where δ (x− xi) is the Dirac delta function (which can be though of as a normal distribution with
mean xi and zero variance), and wi is the probability that a given matrix entry will get classified into
the ith bin; ∑

k
i=1 wi = 1. This distribution is well-normalized, and its mth moment µm has a very

simple form:

µm =
∫ +∞

−∞

xm pB(x)dx =
k

∑
i=1

wi

∫ +∞

−∞

xm
δ (x− xi)dx =

k

∑
i=1

wixm
i , (6)

where we used the property of the Dirac delta function that
∫ +∞

−∞
f (x)δ (x− x0)dx = f (x0) for any

function f (x). The wi are calculated from pA(x) using the criterion that each entry should be lumped
into the bin with the closest value. Let us define corresponding integration limits Ω0, Ω1, . . . , Ωk,
with Ω0 =−∞, Ωk =+∞, and Ωi = (xi + xi+1)/2 for 1≤ i < k. We then have

wi =
∫

Ωi

Ωi−1

pA(x)dx. (7)
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After the binning has been obtained, the eigenvalue distribution can be calculated based on the
circular law and its extensions (Ginibre 1965, Girko 1984, Tao et al. 2010, Allesina and Tang 2012).
If one is interested in the leading eigenvalue, it can be obtained (Tang et al. 2014) from the formula

r = max
{√

SV −E +d, (S−1)E +d
}
, (8)

where S is the number of rows/columns of the matrix, E is the expected value of pA(x), V is its
variance, and d is a possible constant that has been added to the diagonal of the matrix.

The example given in the main text involves the uniform distribution pA(x) =U[−1,1], having
mean EA = 0, variance VA = 1/3, and d = 0. The leading eigenvalue rA is therefore simply given
by
√

SVA, or
√

S/3. We bin this matrix with three bins (−1, 0, 1). The probability of a given
x ∈U[−1,1] falling into the −1 or 1 bins is 1/4, while the probability of falling into the 0 bin is
1/2. We therefore have w1 = 1/4, w2 = 1/2, and w3 = 1/4. The binned distribution pB(x) therefore
reads

pB(x) =
3

∑
i=1

wiδ (x− xi) =
δ (x+1)+2δ (x)+δ (x−1)

4
. (9)

The mean of pB(x) is

EB =
∫ +∞

−∞

x pB(x)dx =
1
4

∫ +∞

−∞

x [δ (x+1)+2δ (x)+δ (x−1)] dx =
1
4
(1+2 ·0+(−1)) = 0,

(10)
while its variance is

VB =
∫ +∞

−∞

(x−EB)
2 pB(x)dx =

∫ +∞

−∞

x2 pB(x)dx

=
1
4

∫ +∞

−∞

x2 [δ (x+1)+2δ (x)+δ (x−1)] dx =
1
4
(
12 +2 ·02 +(−1)2)= 1

2
.

(11)

The leading eigenvalue rB of the binned matrix is then given by Eq. (8), which in this case simplifies
to rB =

√
SVB =

√
S/2. The ratio of rB and rA is then

rB

rA
=

√
S/2√
S/3

=

√
3
2
≈ 1.22. (12)

The same calculation and comparison can be made with a different binning scheme involving
five bins (−1, −1/2, 0, 1/2, 1). Using Eq. (7), we obtain wi = (1, 2, 2, 2, 1)/8, therefore pB(x)
is given by

pB(x) =
5

∑
i=1

wiδ (x− xi) =
δ (x+1)+2δ (x+1/2)+2δ (x)+2δ (x−1/2)+δ (x−1)

8
. (13)

The mean is again

EB =
∫ +∞

−∞

x pB(x)dx = 0, (14)
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but the variance now reads

VB =
∫ +∞

−∞

(x−EB)
2 pB(x)dx =

∫ +∞

−∞

x2 pB(x)dx

=
1
8

∫ +∞

−∞

x2 [δ (x+1)+2δ (x+1/2)+2δ (x)+2δ (x−1/2)+δ (x−1)] dx =
3
8
.

(15)

The new ratio of the leading eigenvalues, based on Eq. (8), is

rB

rA
=

√
3S/8√
S/3

=

√
9
8
≈ 1.06. (16)

All the above formulas assumed that the matrix entries were all independently drawn from the
same distribution. The same approach may in principle be extended to different types of random
matrices. For instance, the elliptic law (Sommers et al. 1998, Allesina and Tang 2012, Tang et al.
2014) concerns the eigenvalues of matrices where all symmetric pairs of entries (Ai j,A ji) are
sampled from some bivariate probability distribution with identically distributed marginals and
correlation ρ . The eigenvalues are then uniformly distributed within an ellipse of horizontal and
vertical semi-axes

√
SV (1+ρ) and

√
SV (1−ρ), respectively. The leading eigenvalue r is then

equal to
r = max

{
(1+ρ)

√
SV −E +d, (S−1)E +d

}
, (17)

where d is the mean of the diagonal entries, E = Ai j is the expected value of the offdiagonal entries,
V = Var(Ai j) is their variance, and

ρ =
Ai jA ji−E2

V
(18)

is the expected correlation between symmetric pairs of (offdiagonal) entries. To determine the ratio
of the leading eigenvalues of the original matrix A and the binned matrix B, one simply calculates
EA, VA, ρA and EB, VB, ρB, applies Eq. (17) to obtain both rA and rB, and calculates their ratio. There
is one difference in how pB(x,y) is calculated, however: the integrals in Eq. (7) now become double
integrals, going over both directions of the bivariate distribution pA(x,y).

4 Calculating pseudospectral contour lines

There are several methods for computing the pseudospectra of matrices (Trefethen and Embree 2005,
chapters 39-44), each adapted to different situations. Here we only describe the simplest algorithm
(Trefethen and Embree 2005, p. 371), which we used to generate the pseudospectral contour plots of
the main text.

The ε-pseudospectrum of a matrix A is defined as the set of complex numbers that are eigenvalues
of all possible perturbed matrices A+P with ‖P‖ < ε , where the matrix norm ‖ · ‖ is defined
as ‖P‖ =

√
λmax(P∗P), with P∗ being the conjugate transpose of P, and λmax(P∗P) the largest

eigenvalue of P∗P. An equivalent definition uses the concept of singular values (the singular values
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of a matrix A are the square roots of the eigenvalues of A∗A): the ε-pseudospectrum of A is the
set of complex numbers z such that the smallest singular value of the matrix zI−A is smaller than
ε , where I is the identity matrix (Trefethen and Embree 2005, pp. 16-17). The simplest way of
obtaining pseudospectra is to compute the smallest singular values of zI−A on a regular grid of
points in the complex plane and then visualize this information via a contour plot.

If the matrix to be analyzed is given by A, the grid consists of m points in both the real and
imaginary directions, and the starting and endpoints along the real and imaginary directions are
given, respectively, by reMin, reMax, imMin, and imMax, the following R code (R Development
Core Team 2008) computes the minimum singular values on the grid and stores them in the matrix
sigmin:

x <- seq(from=reMin, to=reMax, len=m)
y <- seq(from=imMin, to=imMax, len=m)
sigmin <- matrix(0, m, m)
for (k in 1:m) {
for (j in 1:m) {
sigmin[j,k] <- min(svd((x[k]+y[j]*1i)*diag(ncol(A))-A, nu=0, nv=0)$d)

}
}

This information may then be visualized by, say, invoking the contour function. Note that there
are more efficient algorithms available; see the book by Trefethen and Embree (2005, p. 375) for
one that is much faster but still reasonably simple.

5 Departure from normality

Despite the avaliability of algorithms for obtaining pseudospectral contour lines, the computation
itself can be quite time-intensive, especially when S is large and the resolution of the grid on
the complex plane is high. It would be good to have a way of assessing, before performing the
computations, whether one expects large or small pseudospectral regions. Since normal matrices
possess the smallest possible pseudospectra (Trefethen and Embree 2005, Theorem 2.2), a natural
way to see if the spectrum of a matrix would be sensitive to perturbations is to measure the matrix’s
departure from normality. Any such metric is bound to be approximate, because nonnormality is a
complex property that cannot be encompassed into a single number (Trefethen and Embree 2005,
p. 446). Nevertheless, such measures do provide a quick and useful way of checking whether we
expect a matrix to be oversensitive to perturbations.

One commonly used measure of the departure from normality (Henrici 1962, Lee 1996) is

dep(A) =

√
S

∑
i=1

σ2
i −

S

∑
i=1
|λi|2, (19)
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where λi and σi are the ith eigenvalue and singular value of A, respectively (singular values are
the square roots of the eigenvalues of A∗A). This metric is equal to zero for normal matrices, and
can get arbitrarily large for highly nonnormal ones. As there is no upper limit to dep(A), it is not
immediately clear whether any given nonzero value of this metric should be considered large or
small.

One way of finding a point of comparison is to calculate dep(M) for a simple S× S random
matrix M, where each entry is drawn independently from the same distribution with mean zero
and variance V . The reason is that such matrices are known to possess only a very mild degree
of nonnormality, being fairly robust to perturbations of their entries (Edelman 1988). Any matrix
whose departure from normality is comparable to or smaller than that of the aforementioned random
matrix is therefore likely to possess a spectrum that does not change much in response to binning.
Note that the eigenvalue and singular value distributions of these random matrices do not depend on
the shape of the probability distribution from which their entries are drawn, merely its variance.

The departure from normality of the random matrix described above can be derived analytically.
The probability distribution pσ (x) of their singular values follows

pσ (x) =
2

π
√

SV

√
1− x2

4SV
(20)

for 0≤ x≤ 2
√

SV and 0 otherwise (Marčenko and Pastur 1967). In turn, the probability distribution
of the absolute values of their eigenvalues pλ (x), as a function of the distance x from the origin of
the complex plane, follows

pλ (x) =
2x
SV

(21)

for 0≤ x≤
√

SV and 0 otherwise (Tao et al. 2010, Allesina and Tang 2012).
Eq. (19) instructs us to sum the squared singular values and eigenvalues. We therefore transform

pσ (x) and pλ (x) by introducing the new variable y= x2, from which x=
√

y and |dx/dy|=
(
2
√

y
)−1.

The transformed probability distribution gσ (y) of singular values then reads

gσ (y) = pσ (x(y))
∣∣∣∣dx
dy

∣∣∣∣= 1
π
√

SV y

√
1− y

4SV
(22)

for 0 ≤ y ≤ 4SV and 0 otherwise. In turn, the transformed probability distribution gλ (y) of the
absolute eigenvalues reads

gλ (y) = pλ (x(y))
∣∣∣∣dx
dy

∣∣∣∣= 1
SV

(23)

for 0≤ y≤ SV and 0 otherwise.
We can now evaluate Eq. (19) by approximating the sums with integrals (this assumes S is large).

The sum of all the squared singluar values is equal to S times their mean:

S

∑
i=1

σ
2
i = S

∫ 4SV

0
ygσ (y)dy = S

∫ 4SV

0

y
π
√

SV y

√
1− y

4SV
= S2V. (24)
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The sum of the absolute squares of all eigenvalues is again S times their mean:

S

∑
i=1
|λi|2 = S

∫ SV

0
ygλ (y)dy = S

∫ SV

0

y
SV

dy =
S2V

2
. (25)

For a random matrix M, Eq. (19) then reads

dep(M) =

√
S

∑
i=1

σ2
i −

S

∑
i=1
|λi|2 =

√
S2V − S2V

2
= S

√
V
2
. (26)

We can now introduce a measure of the scaled departure from normality depn(A), comparing
the degree of nonnormality with that of a random matrix which is of the same size and its entries
are of the same variance as the original matrix. Take an S×S matrix A and determine the sample
variance V of all its entries. The metric then reads

depn(A) =
dep(A)
S
√

V/2
. (27)

Whenever this metric is equal to one, the degree of nonnormality of A is that of a random matrix.
The following R function (R Development Core Team 2008) calculates this metric, given that

the sample variance of the entries of A is nonzero:

depn <- function(A) {
eA <- eigen(A, only.values=TRUE)$values
sA <- svd(A, nu=0, nv=0)$d
depA <- sqrt(sum(sA^2) - sum(abs(eA)^2))
S <- nrow(A)
V <- var(as.vector(A))
depRand <- S*sqrt(V/2)
return(depA/depRand)

}
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Figure S1: Box plots of how the leading eigenvalues of randomly generated community matrices A are
captured by those of their binned counterparts B. Each matrix is binned with no misclassification. Rows
correspond to different values of the binning resolution b; columns to different numbers of bins k. The data in
each panel are separated based on the number of species. The ordinate of the panels shows the difference
between the leading eigenvalue rA of the original and rB of the binned matrices relative to σA, the total range
of the real parts of the original matrix’s eigenvalues. Interpretation of the box plots: median (lines), 5%
to 95% quantiles (boxes; note that they encompass 90% instead of the usual 50% of the data), and ranges
(whiskers).
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Figure S2: Box plots of how the leading eigenvalues of randomly generated community matrices A are
captured by those of their binned counterparts B. Each matrix is binned with a 20% misclassification rate.
Otherwise, the plot is organized just like Fig. S1.
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Figure S3: Box plots of how well the leading eigenvalue of A’s Hermitian part H(A) is approximated by the
leading eigenvalue of B’s Hermitian part H(B), where B is the binned counterpart of A. The ordinate of each
panel shows the difference between the leading eigenvalues rH(A) of the Hermitian parts of the original and
rH(B) of the Hermitian parts of the binned matrices relative to σH(A), the total range of the eigenvalues of the
Hermitian parts of the original matrices. The rate of misclassification is 0%. Rows, columns, and panels are
organized just as in Fig. S1.
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Figure S4: As Fig. S3, except each matrix is binned with a 10% misclassification rate.

17



b = 2 b = 4 b = 6 b = 10 b = 14

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

3 bins
5 bins

7 bins
9 bins

50 100 250 500 50 100 250 500 50 100 250 500 50 100 250 500 50 100 250 500
Number of species

(r H
(B

)−
r H

(A
))

σ H
(A

)

Figure S5: As Fig. S3, except each matrix is binned with a 20% misclassification rate.
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Figure S6: Box plots of how the leading eigenvalues of community matrices A are captured by those of their
binned counterparts B, where the matrices A are generated by the Allometric Trophic Network model (Berlow
et al. 2009). Each matrix is binned with no misclassification. The figure is organized just like Fig. S1, except
the data in the panels are not separated based on the number of species.
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Figure S7: As Fig. S6, but with a 20% misclassification rate.
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Figure S8: As Fig. S6, but for reactivity instead of stability; i.e., how well the leading eigenvalue of A’s
Hermitian part H(A) is approximated by the leading eigenvalue of B’s Hermitian part H(B) in the Allometric
Trophic Network model. Each matrix is binned with zero rate of misclassification.
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Figure S9: As Fig. S8, but with a 10% misclassification rate.
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Figure S10: As Fig. S8, but with a 20% misclassification rate.
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Figure S11: The effect of varying network connectance on the prediction accuracy of the leading eigenvalue.
Organized as Fig. S1, except with 10% misclassification rate, the abscissa is organized by different values of
the connectance instead of different values of the number of species, and the number of species is fixed at
S = 50.

24



b = 2 b = 4 b = 6 b = 10 b = 14

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

3 bins
5 bins

7 bins
9 bins

0.1 0.25 0.5 1 0.1 0.25 0.5 1 0.1 0.25 0.5 1 0.1 0.25 0.5 1 0.1 0.25 0.5 1
Connectance

(r B
−

r A
)

σ A

Figure S12: As Fig. S11, but with the number of species fixed at S = 100.
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Figure S13: As Fig. S11, but with the number of species fixed at S = 250.
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Figure S14: As Fig. S11, but with the number of species fixed at S = 500.
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Figure S15: The effect of varying network connectance on the prediction accuracy of the leading eigenvalue
of the Hermitian part (related to reactivity). As Fig. S11, but the ordinate represents predictions of reactivity
instead of stability.

28



b = 2 b = 4 b = 6 b = 10 b = 14

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

3 bins
5 bins

7 bins
9 bins

0.1 0.25 0.5 1 0.1 0.25 0.5 1 0.1 0.25 0.5 1 0.1 0.25 0.5 1 0.1 0.25 0.5 1
Connectance

(r H
(B

)−
r H

(A
))

σ H
(A

)

Figure S16: As Fig. S11, but with the number of species fixed at S = 100.
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Figure S17: As Fig. S11, but with the number of species fixed at S = 250.
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Figure S18: As Fig. S11, but with the number of species fixed at S = 500.

31



b = 2 b = 4 b = 6 b = 10 b = 14

0

250

500

750

0

250

500

750

0

250

500

750

0

250

500

750

3 bins
5 bins

7 bins
9 bins

Yes No Yes No Yes No Yes No Yes No
Stability correctly predicted?

C
ou

nt

Figure S19: The number of cases in which stability is correctly predicted, out of those matrices whose
leading eigenvalues have a magnitude less than one twentieth of the total spread of the real parts of all
eigenvalues: |rA|/σA < 0.05. Rows correspond to different values of the binning resolution b; columns to
different numbers of bins k. The rate of misclassification is 10%.
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Figure S20: As Fig. S19, but for all those matrices for which |rA|/σA < 0.1.
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Figure S21: As Fig. S19, but for reactivity instead of stability.
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Figure S22: As Fig. S20, but for reactivity instead of stability.
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Figure S23: As Fig. S1, but with a misclassification rate of 10%, and all interaction strengths drawn from
lognormal distributions of varying means and variances (see main text).
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Figure S24: As Fig. S23, but with all interaction strengths drawn from variously parameterized Gamma
distributions.

37



b = 2 b = 4 b = 6 b = 10 b = 14

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

3 bins
5 bins

7 bins
9 bins

50 100 250 500 50 100 250 500 50 100 250 500 50 100 250 500 50 100 250 500
Number of species

(r H
(B

)−
r H

(A
))

σ H
(A

)

Figure S25: As Fig. S23, but for reactivity instead of stability.
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Figure S26: As Fig. S25, but with all interaction strengths drawn from variously parameterized Gamma
distributions.
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